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significance and Explanation

boundary value problems for partial differential equations.
situations arise in the theory of heat conduction and other
The physical parameters involved are often dependent on the

The construction of accurate, efficient algorithms for

cient algorithms are proposed and completely analyzed.

. Many physical situations can be modelled by the solutions of initial

Examples of such

diffusion processes.

time variable.

the approximate

solution of these parabolic equations is studied in this paper. New, effi-
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EFFICIENT HIGHER ORDER SINGLE STEP METHODS
FOR PARABOLIC PROBLEMS: PART I

James H. Bramble and Peter H. Sammon

I. Introduction

In this paper we study efficient ways to calculate approximations to the solution of
a parabolic equation that are of third or fourth order in time and of high order in space.
The approximations are generated by rational function based schemes (cf. Nassif and
Descloux [7] or Baker, Bramble and Thomée [2] if the operator in question is time inde-
pendent) but these schemes are modified in a manner suggested by Douglas, Dupont and Ewing
[4] in their work on the Crank-Nicolson method. We study the schemes in the context of a
linear parabolic equation with time dependent coefficients in this part of the work and
we will generalize these schemes to nonlinear equations in Part II of this work.

The schemes suggested by Nassif and Descloux in [7] are single step methods based on
a certain class of rational function approximations to the function e-x, x ¢ R and a
given family of discrete spacial operators. Nassif and Descloux give estimates in [7]
that show that the resulting approximations make errors that are of optimal order. How-
ever the schemes are not really suitable for practical computation since each step of the
time-stepping procedure involves the solution of a new linear system that is related to
the family of spacial operators.

Douglas, Dupont and Ewing address this problem in (4] and suggest the remedy of using
a preconditioned iterative technique to approximately solve the linear system. This
approach only requires the solution of linear systems involving a fixed discrete spacial
operator if sufficiently many iterations are done at each time step. Conditions are
discussed in [4] that also allow one to iterate a fixed number of times at each time step
(a number that is independent of the discretization parameters) and still observe the
optimal order errors. The overall work required by this strategy is of the magnitude of
the work required by the usual Crank-Nicolson scheme applied to a linear problem with time
independent coefficients. Thus under these conditions, they obtain a scheme that is effi-

cient as well as effective.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024. This material is

based upon work supported »; the National Science Foundation under GrantsNo. MCS76-07236 A02
and MCS78-09525.
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The results of this paper are similar to those of [4]) with regard to our higher order
schemes and are in fact in some ways stronger. In particular, because the schemes which we
consider are inherently more dissipative than the Crank-Nicolson scheme, we are able to ob-
tain the best results unconditionally. 1In addition, our analysis shows that the special
closeness requirements of the initial values to the "elliptic projection" demanded in (4]
are unnecessary and that a more natural and more easily computed initial projection may be
used.

An alternate approach to the problem of finding efficient time stepping algorithms can
be found in work by Douglas and Dupont in [3]. They analyze two efficient schemes for para-
bolic problems. The first is a method which is of first order in time (the Laplace-modified
procedure) and the second is a three level method of second order in time,

We now introduce the parabolic problem and some convenient notation. Let @ « md ¥
d >1, be a compact domain with a sufficiently smooth boundary 32 and an outward pointing
unit normal n(x) = (nl(x),...,nd(x)). Let 1 > 0 . The following parabolic problem will

be studied under certain smoothness assumptions:

d
T %
U, L(t)u = 2 Déaij(x,t)nju) + ao(x,t)u on Q x (0,1) ,
i,3=1
d
Q.1 < ul =0 or maw| = [ nagDiul =0 on awx(0,
N N i,3=1 N
ul =v on Q.

= t=0

Here A = [nij(x,t))? j=1 is a symmetric, uniformly positive definite family of matrices
’

of sufficiently smooth coefficients on Q x (0,11, ao(x,t) is a nonnegative, sufficiently
smooth function on § x [0,7) and v(x) is a given initial data function on Q . If the
Neumann boundary conditions are under consideration, we will further require that ao(x,t)
not vanish on 2 x [0,7] and that the coefficients {a,,} have the following special form:

ij
aij(x,t) = a(x,t)iij(x) S S - U
for sufficiently smooth functions a and (éij}. (This extra requirement ensures time
independent boundary conditions). We will refer to the Dirichlet boundary conditions as

PC_ and to the Neumann conditions as BCN .
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We let H denote the usual L°(Q)-based Sobolev space with norm "'"E' £ a non-

negative integer. We also let Hi denote the subspace of Hl that consists of functions
that vanish (in the sense of trace) on 23Q . We will use (¢,*) to denote the usual Lz(Q)-
inner product on Q .

The operators {L(t)}0<t<r form a family of L2(9)-se1fadjoint elliptic operators on

the following domain:

Hz n H1 if we have BC_ .
o D
DL =
H2 n {w e H2:nAVw = 0} if we have BC_ .
— N
N
Moreover, the form
d
D(t)(+,) = 1,%-1“” D4(+),D; (1)) + (a (), ()

is (strongly) coercive over Hi x Hi if we have BCD or H1 X Hl if we have BCN .

Thus we can apply the standard parabolic equation theory to (1.1) (cf. Friedman [5] or
Lions and Magenes (6]) and get the existence and uniqueness of solutions u for various
classes of initial data. We will always assume that v ¢ DL and further smoothness and
compatibility conditions will be added later.

We let T(t): LZ(Q) + D, denote the solution operator for L(t); that is, L(t)[T(t)f]

L
= f for all f ¢ LZ(Q). We note that {T(t)})<t<T is a smooth family of bounded operators
from Hl to Hl+2 n D, for 2 > 0 and that {L(t)}o<t<T is a smooth family of bounded
operators from H£+2 n DL to Hl , for £ > 0 . In fact, L(j)(t) = ({%;)JL(t). j>o0,

can be calculated by differentiating the coefficients of L(t) with respect to time and if

we let T(j)

(t) = (é%)jT(t), we have that
@ ey = vy 1P 0100 .

We shall use the symbol C to denote a generic positive constant throughout this

m
2
paper and we will define Z {¢) =0 1if m, < m .
I=m,
j=




11. Spacial Discretization Operalors

)
We will assume that we have a finite dimensional subspace Sh ¢ L(12)  (associated

with parameters O « h « 1 and r > 2) and a sufficiently smooth family of selfadjoint,

a3

positive semidefinite operators (Th(t)‘\\\‘ ‘ on  L°(1)  that have range in Sh and are

positive definite on 8, + We define l.h(t\ on 8 as the inverse of ‘l‘h(t)fq for
s

)
each O <t < v. Given f L7, we will regard Th(t)( as an approximation to T(t)f.

In fact we will require that the following be true:

@.10 re M@ -2 ena o™, 330, 02,
here T'(‘“,(t\ - (-{-‘(\ 1'l‘h(ﬂ:l'(m » LT . Finally, we will assume that there is a norm

el on ::h that satisfies the following:

1
Al Y
(2.2) (1] B :_\‘ﬂy‘"; . \’(Lh(t,v'.v‘, for 2R BT 5 ¥ Sh N
(1)
2.3 | > a | ¢ & > 0 e 2 ” s 0
( ) “'h (Hml »2\ o - (jHlvr‘"]llu‘JI for O <t 1.«1,¢: Sh and j >
(1) 9.3 "
here l'h (M) l.h(t):sh bh

We note that many of the well known Galerkin-type methods satisfy these assumptions.
For a discussion, see Sammon [8),

We let l“(t\ T'h(ﬂl‘(ﬂ:l\l » sh ¢ 0 Xt <1, define a family of "elliptic projec-

- ]
tion" operators. We also let P:L7(0) » sh denote the orthogonal L7 () = projection onto

Sh. (Note that Th - P‘rhi‘\. If w e H“2 n Dl for some O <« { <« r-2, then
(2.4) I O X T Il T IR I S

(1) 4.3
wWe let i“ (t) (dt) P!(H for j >0.

Suppose we choose v ¢ w' so that u(t) « ' and fu(t)l .- CI!vHr for 0 ¢t <
Then setting W(t) = P‘(nu(t), we have the following:
(2.9 lalt) = WOl < ¢ Nivl
We also wish to see how well the time derivatives of W approximate those of u . To

this end we study the following:

d=
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Proposition (2.1): 1f w « N“‘ a DI for same O < & < y=2, then
upﬁ‘“’ wl <« cmn't? M, O0StsT, m>0.,
Proof: We see that (2.1) implies that
m
™ <n § M DG A
¢ e 2 h
j-O
T om () (=) te2
< T MeL™P wp s o™,
Rl te2

d.m L te2 a2
-l (Z‘T) Twlt ¢ C W llwﬂ“.T = C h 1 wit 2e2"

An easy application of the above result shows that if 0 < Lr=d, m>Q0 and
v o gt is suitably chosen then
: (m) (m) <y 002
(2.6) fa (t) - W @M < Ch liell te2eom ! 0 <X <%, i
)
where N(N (t) = (%)‘\I(H. In particular, this shows that "(n (t) is uniformly

=
bounded in L*(Q) provided that u and v  are suitahly bounded.

At times, we will assume that the following condition holds:
“h: . (1) (1)

(Q)Th(s)ﬂ. ll'l‘h(s)l.h (e c(y), Qe v 330,
Estimates in Sammon [8) or Nassif and Descloux [7] show that this condition holds for

~

various Galerkin-type methods if inverse assumptions are valid. The following result is

a consequence of Condition lh:
mel
i ™ e <V ra® e for m >0, O<k ev .
.)‘ B j:o T 7




111, Time Discretizations

We how consider a method of computing approxXimations to the solution u(t) of (1.1),

“X

We begin by studying rational function approximationa to the exponential e on
- . P(x) l
M . It iz well known that there are rational functionas v(x) = C‘Tﬁ (P and Q are i

relatively prime polynamials) that satiafy the following conditions:

(1) Qix) > 0 for x>0, Q) =1,
(1 (i) -1e8 « Q-l(x)P(x\ < X for same 8 >0, x>0,
(1i1) rix) - o-xl L C x"” for aome v >1 , x>0,

We will use P's and Q'm that are no more than gquadratics in our later work but for now,
Y W

we assume that »P(x) = Y p(x‘ and  Q(xX) = \ q(x‘ where p =q =1. We have the fol-
=0 =0 ke

lowing examples, where P and Q are of deyree two or less:

(1) PO q‘-l with §=1,v=1 (Rackwards Buler)
(i) Py - =172, p,=0, ql-l ‘30 Q40 with  J«0,\ =2 (Crank=Nicolzon)
(1i1) The family parametrized by >~ 14, V¢ 1/2

»

pl-(2\-l\. p__\-(\'-.'\tl £ 3 q‘-.'\. q"-l’ with & > 0, v = 2

I \= ;- (a1, wed {Calahan)
(iv) ‘\1-‘\‘—0, qlnl, q‘.x Y with  d=l,usl (rade)
(v) l“"l X, l‘."\‘o q‘-.‘". q_‘-'\ /6 with § > 0, v =) (Padé)
(vi) S RPN O E A e TIe 10 N EERE T B PR (Padd) .

We are particularly interested in the cases where & ~ 0.
We will now szhow how property  (3.1) (1i1)  Can lead to a two point Taylor expansion
used by Nasaif and Descloux in [7).

Proposition (1.1): sSuppose that g(t) iz a smooth function on  [O,¢ ‘\ « Then fo,
\

T8 -t‘.whavothnr
= —

v \'
4 \ . ) 1)
(. Foaeoa®w - T op oo 1 rend ™
[N I N
where q“‘(t\ - (,5:*\ ‘\Ht\ and
.
\: a1
(L kit ) = §J —d ()} (e
Loo(v=1)1
f=0
*ba
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- -X +1 -
Proof: From (3,1)(iii) we see that Qix)e - pPix) = o(x\ ). Now take m derivatives,

where O «m « v, of each side of this equation and evaluate them at x=0. We see that
™ m =
mp = J OE0" 41 g
i=0 -

i
This gives (3.2) with g(t) = tm. 0 <m « v, and hence (3.2) if g(t) is a polynomial
of degree no more than \.

We can expand a sufficiently smooth function g(t) in a Taylor series of degree V
and apply our above work. This shows that (7) holds with the kernel given and completes

the proof.

1f we let 1uh(t)\0:t:‘ © S, Dbe defined by

& = Q -
(3.49) uh,t + Lh(t)uh i [ uh(o) vy e
where vh € sh is some function “close" to v ( for instance, Vi Pv) then work by

Sammon (8] shows that

(3.5) fu(t) - u (00 = 0"y , Oxt <,

under certain conditions. Thus if we could approximate the solution uh(t) of (3.4)

with a known small error, we could use (3.5) to show that our approximation is actually

close to u(t). We will use our two point Taylor polynomial to construct an approximation

to u, .

Let 0 <k <1 so that Mk = t for some integer M > 1. We will study a method of
X

P (x)
Q(x)

through (3.1) (ii1) and where the degrees of P and Q are two or less. (This implies

approximating uh(k). Choose a rational function r(x) = that satisfies (3.1) (1)

that v < 4.) If we note that
(1) d

uy % -Lh(t)uh(t) i
(2) a,2 2 (1)
= (= = ) -
uy (dt) uy, (‘h(t' Lh (t‘)uh(t),

then setting g(t) = uh(t), 0 <t <k and using (3.2) gives us the following:

Al 3 {
(3.6) (1 + qpke, () + g (L) (k) - L}:U(k))?nh(k)
= {1k ¢ px Al - nP o @« oat e, ),
Ve




Thus if the quantity in the first set of braces is invertible, we might expect the fol-
lowing to be “close" to uh(k):
(1) b | (1)

-1 i 3 »
W )T« p kL o+ pkT(L - L T HO) vy

2 9
Vo= (I + qlkLh + qzk (Lh » T h h

This scheme for approximating uh(k) will be the basis of a scheme for approximating
uh(Nk) for any N > 1. It will be seen that the approximations can continue to be de-

L(j)(t\‘

fined using operators that are constructed from P , Q and the family | h Yo 1t

We note that these schemes can be defined if the degrees of P and Q are higher than two,
as was done in [7).

The solution uh(t) of (3.4) only plays a motivational role and will not enter in any
way in the rest of this work. For purposes of our estimates, we will need same function
in Sh that is uniformly close to u(t) in the sense of (3.5) and uh(t) would be a

possible candidate. We will use W(t) for this purpose however, mainly because it is

easy to estimate its time derivatives.

Yor 0 <n <M, et ¢ =nk , L(j) = L(J)(t )G > 0), T(j‘ = T(j)(t 1K s T ')
. e n n h n - n h n -
P = P(-kL ), Q = Q(-kL ), P_=P_ =~ p kzL(l) Q =Q -q k:L(l) We now cettle the
n n n Rl n b e, LS ) o I Y 5

question of én‘s invertibility on Sy -

Proposition (3.2): For X sufficiently small we have that

(3.7) Cl(Qn»‘,v') < (éhv'.v') :CQ(an‘,v‘), n >0, ¢ ¢ Sh

Proof : This follows immediately from the following inequality:

. 2 (1) -
((an,c) - (Qn¢,¢){ = Kk [q2(Ln e.e)| < Ck(Q v )

We will assume that Kk 1is sufficiently small for the rest of this work. Then since
Qn is invertible due to Q(x)'s positivity on mf, the above Proposition shows that
én is invertible.
We now return to our description of an approximation to the solution of (1.1). Given
0 R

v(x), we choose a V Sh that is close to v (for instance \V = Pv , althouah we

4 R : - g . fel |
will describe perhaps better possibilities later) and recursively define V (0 < n < W)

given " ,» by the following formula:

2 n+l . n
0 g ‘4 8 M
(3.8) \n01\ = P“ ' SR 0 <n <M




We expect v" to be close to uh(tn) which is in turn close to u(tn) (for n > 0)
and we will derive corresponding estimates.

As noted before, this approximation scheme has been studied in an Lz(u) setting by
Nassif and Descloux in (7]. We now see how computation of this scheme involves solving
a new linear problem at each time step and why a more efficient variant would be
desirable. We shall later study the variant suggested by Douglas, Dupont and Ewing in
(4] . However, since the analysis of this variant requires estimates of the original
scheme (the one definead by (3.8)) in new norms, we shall first present another analysis

of this scheme. We shall also define a natural choice for VO o

G

: P




IV. Preliminary Error Estimates

We are primarily interested in how close v' is to W' = w(tn) (0 <n < M) since
we already know (recall (2.6)) how close W' is to u" = u(tn) (0 <n <M). As noted
before, these estimates are already known in the LZ(Q)-norm but we wish to study them in
the (possibly) stronger norms given by (Qn(').('))l/z. This will allow us to study a

variant of the scheme where the (Qn(-),('))l/2 norm is in some sense a natural norm of

the problem. We note that most of our work will go on in S in the next two sections.

h
Letting E'=v" -w for 0 <n <M, we see that
n+l n n ~ n
(4.1) Q +1F B B (Pn Pn+1)E + (Pn - Pn)E
~ n+l = n+1 ~ .n
" (Qn+l Qn+1)E - (Qn+1w =B ¥ LS

This will be an important error equation.
We note that (4.1) is of the form QW = PV + F where W,V,F € Sh and Q and P

are selfadjoint operators on S, that satisfy the following:

h
(i) (Qv,9) >0, 0#¢ ¢ Sh ;

(4.2) (ii) ((Q-P)p,w) >0, O # ¢ ¢ Sh ’
(iii) ((Q+P)w,¢) > 8(Qv,¢), O # ¢ € Spe for some § > 0 .

(0f course (4.2) (i) through (4.2) (iii) follow from (3.1) (i) through (3.1)(iii).) This

situation leads to the following:

Proposition (4.1): Let QW =PV + F where Q and P are selfadjoint operators that

satisfy (4.2). Then we have that
(4.3) (Qw,wW) < (Qv,Vv) - §((Q-P)V,V) + 2(F,W)
Proof: We see that
(QW,W) = (PV,W) + (F,W) = (PV,Q'lpv) : (Q'lp,pv) + (F,W)
= v, 'pv) + 2(7,w) - (@ 7'F,F)
and that (Pv,Q'lpv) = (Qv,V) - ((Q-P)(I+Q’lp)v,v).

A simple calculation shows that I+Q-1P is selfadjoint in the inner product defined
by ((Q-P)+,*) and hence has real eigenvalues. Thus if u is an eigenvalue associated
with the eigenfunction ¢ , (4.2) (iii) shows that u(Qe¢¢) = (Q(I+Q-1P)¢,w) = ((Q+P)y,v)
> 8(Qv,9).

-10-
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|v
o

We conclude that the smallest eigenvalue, W satisfies Again using the self-

adjointness, we see that
((Q-P) (14 'PIV,V) > u ((Q-PIV,V) > 6((Q-PIV,V)
which completes the proof.

We will want to apply Proposition (4.1) to (4.1) and obtain an estimate for

+ o : s : .
(Qm_l,En l,En+1). In anticipation of this, we prove the following estimates.

Lemma (4.2): Suppose n >0, O <m < C and we have Condition B if Q(x) is quad-

h
ratic. Then

[P = B9 0 |

{0

Proof: We first note that (3.1) (ii) implies that the degree of P(x) 1is no greater than

2
N Qn)wl Mz) l

/2

(4.4) <cC k(Qn\ol.\ol)l/z(anz.wz)l .

n+m

the degree of Q(x) and (3.1)(ii) and (3.1)(iii) imply that Q(x) cannot be the
constant 1 . Also if we let R(x) = 1l4x if q2=o and R(x) = 1+x+x2 18 q, #0 , we
see that R-l(x)Q(x). R(x)Q-l(x) <C for x >0 . Thus letting Rj = R(ij)(O <j <M,

we have that

cl(ij,w) < (ij’,v’) 5c2(Rj¢,\o), $es, J20.

Thus it suffices to prove (4.4) with Rn-inner products on the right hand side.

We have the following estimates:

L(1)

(4.5) l((Ln+m'Ln)"’1""2), <ck sup |

Yo
]tn-s,imk (Slwll‘pz) l

1/2 1/2
< Ckuwlll :"“’2"1 SCk(L ey )7 (L 0, 00,) .

2 2
(4.6) l((me-Ln)wl,wz)li RS AT I I “Ln“’l'“‘n+m“'n)‘°z’|
(1)
<Ck ( sup e, =~ (s)T ) (A+lln_, T DL e L e Il ;
= }tn"sl_‘_mk n n4m N i s

note that Condition Bh was used in (4.6).

We now can use (4.5) and (4.6) to complete the proof.
Lemma (4.3): Suppose n > 0 . Then

l((pn-pn)wl,wz)l / /2

(4.7) kg w2 e, .

[€@Q -0 )¢, ,¢,) |

wll=

r— —— - ————— TR AN O

o ——-
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Proof: We note that there is nothing to prove unless Q(x) is quadratic and that it
suffices to prove (4.7) with Rn inner products on the right hand side, as was observed
in the proof of Lemma (4.2). We have that
KLt el ekl < cx® g e e, 00
which suffices to show (4.7).
We now study the truncation error term in (4.1) by comparing it to the true solution

u(t) of (1.1).

Proposition (4.4): Suppose that v ¢ n' , 1 = max(2(v+l),r+2), is such that Ilu(t)llr
(v+l)

+2 =

(e < cuvu“(“’l) for 0 <t <t and we have Condition B if Q(x) is

Cﬁv"t+z, flu

quadratic. Then for 0 - n <M and ¢ ¢« 8 we have that

h

~ n+l - A r \ 1/2

(4.8) f(Qn‘lW Pu )| < Ck(n ot ,, + k HVUZ(le)) (Q ¥ %)
) 4

Proof: We note that ug = -y, Wiy = (L‘-L(l))u = ~L(IOT(1))ut for 0 <t <1 and that
Proposition (3.1} implies that

n+l n+1 2 n+l n n 2 n WV +l
(4.9) It tu q kug g kT ) - (u -plkuttpzk “tt)" <Ck Hv"z(“‘l) .

We also have that W' = Plu) = Puj + (PI-P)uj '

- = - j >
(4.10) ij = Lh(tj)Th(tj)P L(tj)u(tj) = Put T
2 ) ), i
(4.11) L,-L YWY = <L, (P+T
( 3Ly J( + j )ut
iz o j Wmoe
= Lj(PIut+PIT (tj)ut) + Lj(PI P)ut
- (1) ) (1) ) j &
+ Lj(PI P)T (tj)ut + LjP(T (tj) Tj )“t e B
- j (1) RE 3
and Lj!‘x(ut + T (tj)ut) =P Uie -
We now use these facts to see that "
~ nel ~ +1 n+l
L@ W™ P W | < ek ety el e e f 1w tay-pu D (maiasmne
5n
i _y Nl LBt el n+l i G n
+ ({H(v‘ P)ut I+ II(PI p)utu ¢I|(PI P)T (.tm_l)ut o+ H(Pr—l)T (tn)utu

(1) (D)) nel (1) 1 T VS :
CR NG P B bt I S G D CIR B A T B IS (F R R DA
; r v L g 2,172

< Ck(h Nvllr*2 + Kk ”v”2(v+l))(”‘” + K anwﬂ }

which gives our result.
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We can always let VvV = PIV but we note that the approximation scheme defined by (3.8)

choice for V that involves solving a system with QO (or even QO)' Since such systems

have to be solved anyway to take the first step, this would seem to be a better approach.

172

We can now put these results together and demonstrate a bound in a Q " “=norm for

n n
the difference between V and W

Theorem (4.5): Suppose that v is sufficiently smooth and compatible (the hypotheses

of Proposition (4.4) would suffice) and that we have Condition Bh if Q(x) is quadratic.
Then for 0 < N <M,

(4.12) noy o = Wi < e o KIvi+ algy”? v - v vl

Proof: Let 0 < n < M. An application of the results of this section to the terms on the

right of (4.1) shows that

ndl  n+l noon i v r.2 2
(leR B ) < (l*ck)(QnP. JE) 4 Ck(kT 4+ h) IIvIIu '

which gives the result.

We will now examine possibilities for the starting function Vo . We require that

V0 - P_v Dbe bounded by c(kV+ hr) in the Q;/z

I -norm if we wish a comparable error in (4.12).

O

never requires that we determine T, applied to any function. In applications, this would

h
amount to a special, expensive calculation required only at the beginning. There is another

0

We have

™ D@
rroposition (4.6): Let v o« “r nD. ,» L(O)v € D and define V0 and V(' in § by

L L h
the following:

P

[ an“" = v v qkLv + gk @ o - 1Y o)

ks \QOV = P(v + qlkl J(0)v “2" L (0)v) = P Q(KL(0))v .
Then
oy 2wt = p il $
(4.14) "Ql/‘( 0,2 _ PIV)" < Ch Hvllr
Proof: We observe that ‘
(L(z)t‘lv = 12 OV) = (1 = POV, L)

(l) (1) (1)

r‘lv - L (O)v,¢) = ((T

(1) (

@ - riMu@vie v et oo e

13-

- — e 1 O O Vo e - - T—— .
i i - N - “ m




Q,1

™us, if ve let v = Y - P‘V then
JYrY 04) o S T R 2
By - PI\)H g (v PIV)"

2 X
|(v-PIv,w)| + qzk Ch "v“r42“LO¢"
1/2
o el .

|7

|7

4
cht vl il

This completes the proof of the first part of (4.14) and the second part follows even more

simply from the above observations.
This result completes our error analysis for the approximation scheme defined by

(3.8) with VO defined by either equation of (4.13). We will call this the base scheme

in the sequel.

We note that if V°'2 is defined by

(4.15) 30 )vO"? = PG kL (0N
where 5(x) is a polynomial that satisfies 0 < sup é(x)/Q(x) <w, an estimate like
0<x <™

(4.14) will still hold. Thismodificationlnightprove_hseful if é(kLo) isa preconditioning

operator for the kind of linear system solving techniques we will study in the next section.
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V. A Variant of the Base Scheme

As we noted before, the calculation of the base scheme involves the solution of a
new linear problem at each time step. We wish to study a variant of this scheme where we
only approximately solve the linear system at each time step. We propose to use an itera-
tive technique for this purpose which, as we will see, can be provided with a good initial
guess for the true solution.

1f we are at a point in our calculations where we have several accurate approxima-
tions to the function u(t) at previous time steps, it can be seen that there is an
extrapolation of these values that yields just as good an approximation at the next time
step. The smoothness of u(t) makes this possib’e. This extrapolation could be used as
an initial guess for an iterative procedure. But this observation raises a question.
Since even the exact solution of the system which we are approximately solving is no closer
to u (in the sense of order) than the extrapolated guess, why iterate at all? 1f we did
no iterations and used this procedure as an algorithm to generate further approximations,
errors would grow and the approximations would deteriorate. Such an algorithm is not
stable. Of course, the base algorithm (solve the system exactly and forget about iterations)
can easily be shown to be stable although we will not formally state this vresult. Also, it
will not be too hard to see that if we make an error in approximately solving the system
that is of the order of the local truncation error and that is in some sense independent of
the initial guess, then the algorithm is stable and gives accurate approximations. For
the tterative schemes that we will consider, this strategy requires a quantity of iterations
that is on the order of the logarithm of the total number of time steps, per time step.
However, there is a more efficient strategy available if the polynomials P(x) and Q(x)
have the correct properties. If one does in fact give a good initial guess to the iterative
scheme and then iterates only a certain number of times per time step (a number that is
independent of the total number of steps), then even though accuracy is not improved, the
resulting algorithm is stable and generates accurate approximations for u .  This phenom-
enon was first ohserved in (4] in relation to the Crank-=Nicolson scheme. We will give

arguments in this section that show that these results hold for schemes that have the

L




right kind of dissipation; that is, P and Q are such that § > 0. Similar results

can be proven for polynomial pairs that are just stable (§ = 0) but the condition
k <C hz. for some constant C , is required. This condition introduces dissipation and
was used in (4].

We begin by discussing the properties of a particular type of preconditioned iterative

technique for solving linear systems. We will assume that we are working in a finite dimen-

172

sional space H with an inner product (-,-*) H

and a norm M-H“ = (+,°) . Suppose A

H
is a positive definite selfadjoint operator on H and we wish to find an approximation to
the vector x that satisfies Ax =y, where y is known. We will also assume that the

situation is such that we have another positive definite selfadjoint operator Ao at our

disposal for which A;lz,z € H is easy to find and for which we know the following spectral

estimate:

(5.1) xo(Aoz.z)H < (Az.z)H 5 Xl(Aoz.z)H ‘ g eH,

where 0 < XO 2\ are known constants. Then there are methods which when given an initial
guess x(O) for the solution x , generate a sequence of approximations x(“), a>l, to

x that have the following properties:
(a+1) (3) a
{x )j“0

Ao' solving systems involving AO and Hilbert space operations,

(i) The calculation of x given only requires evaluating A and

x(a)

(ii) The sequence + X as a * ~» geometrically in the following way. There is

a decreasing function 0 < y(f) <1 (0 < § < 1) that satisfies y(1) = 0 and which gives

=
the rate of convergence of the iterative scheme in the Ai/‘ norm:
A
1/2 () ar 0 1/2 (0) 3
(5.2) A te=x ") < ey [X;)NAO =x"Ml, » @20,

A given method may or may not actually use the spectrum estimation constants \0 and \

in its calculations. We also note that (5.2) implies that the following estimate holds:

a ™0

BN
Mg Cabey 0 Wk 0y, 1/2,, (a)__ (0)
(5.3) Ay ey <oy ™ N \‘(Tl-)unc (x (D Oy

H H'

The preconditioned conjugate gradient algorithm fits into this framework with

Y= (1-51/2)/14&1/2 ; see (1]1. We also note that another example of such an algorithm is

given by the following descent method. Let y > 0 and given x(“)

define x(“’l) by the following:

for some a > 0,

-16-
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A x(n0l) - ok (l\n‘hk)x(“)

o

This method converges for certain values of y and if we choose | = T;%Tn then we
)
have a method that satisfies (i), (ii) above with y = (1-£)/1+¢ :

We intend to use an iterative scheme with the properties described above to approxi-
mately solve the system (3.8) which defines our base scheme. The Hilbert space H will be
Sh with the L:(H)—innex product and the above discussions outline possible error results.
We will keep the conjugate gradient algorithm in mind since it offers a good convergence
rate and it does not require the values of \0 and \1 in its calculations; they only
enter into its error analysis.

We now must decide what to use as a preconditioning operator. We note that the
contribution of the L::; term in énvl is small, so we can ignore this term when con-

structing a preconditioner. We now discuss two possibilities:

Al Qo as_a preconditioning operator.

This is a good choice if linear systems involving Qo are easy to solve. For
instance, if Q(x) = 1¢qlx is linear then QO = I#qlkLu has essentially the same structure
as the LO operator and solving this type of problem is well studied. If Q(x) = (10\x\:
as in the Calahan method, then solving systems with QO = (I#\kLO)z only involves solving
two successive systems with the (I+\kL0) operator. Thus QO is also a good preconditioner
for this method. If Q(x) is not a perfect square, the fourth orvder diagonal Padé scheme
being a notable example, there are other methods for solving systems involving QU that use
complex arithmetic. Thus using QO as a preconditioning operator is possible for these
methods. We will offer an alternative in B however.

We observe that the following result contains (5.1) for QO as a preconditioning

operator.
Proposition (5.1): Let 0 <mn <M and assume Condition Rh if Q(x) is quadratic,
Then for ¢ ¢ Sh '
=1 .
(5.4) (et ~t ak[) QW) < Qi) < (eclt —t k) Qv i)

)=




- o AP AR oo S -

1 f: We see that
(Q'¢.¢> = Q)+ Q=0 Ivav) + ((Q QYY)
and, using the techniques of Proposition (4.2) and (4.3), that
| - 3 <C -
Q@ v ) # ((Qn-Qm)w.f)l < ‘!t“ tm§k((0n¢.¢)
This gives the second ineguality and the first is done in a similar fashion using Proposi-

tion (3.2).

Thus when we are using the iteration technique at the n-th time step, n > 1 , we

can always take \0 - \;l = (1sC t“ﬂ)-l and we can expect an error reduction by a factor
of at least '((1sC ',,.1)-2) after o iterations. Note that this implies that y < ctml
s0 that y « Ck for the first few steps. Also if we are given an ¢ > 0 , there is an

a 172
a > 1 (independent of n) so that  « ¢ ¢t .

n

Now we consider another possibility for a preconditioning operator that is useful if
Q(x) is quadratic but not a perfect square. lLet \ > 0 and set S“ = 1 4 \kLn for

0 <n <N,

B. sn - (lo\kl.o) or s; as a preconditioning operator

We first note that it is easy to solve systems using these operators; that is, we
only need to solve (perhaps successive) systems with the (Io\kx,o) operator. We can also
prove the following result by the methods used in the proofs of Propositions (3.2), (4.2)
and (4.1):
Proposition (5.2): Let 0 <m,n <M and ¢ be the degree of Q(x). Suppose that
Condition Bh is satisfied if Q(x) is quadratic. Then for ¢ Sh , we have that
(5.5) cl(szw.w) Q) : Cz(s:¢.¢)

-— -

Thus when we are using the iteration technigue at the n-th time step, n > 1, we

can always take ‘n'/‘\ - Cl/(’2 1 and obtain an error reduction by a factor of at least

172

y“ after a iterations. If we are given an ¢ > 0, there is an a < C 1oa (1 /¢ t“’ ) so
a 172 172 e

that vy <« By where we assume that L TS 1 We cannot assume that o is inde-

pendent of n  this time. However we note that if we do | C\loq(tn)[ + ¢ iterations
at the n=th time step where n  ranges between 1 and some N, N1, in the course of

caleulating an approximation to u(tN) , then the average number of iterations per time step is

-18=




Hence the average number of iterations per time step is independent of N , for large N .
. We now gather these ideas. We will assume that we have chosen a preconditioning

operator, which we will call pQ and we have Condition Bh if Q(x) is quadratic. Thus

we can assume that

(5.6) c,Peuv) < (§ew) <c,Poe9) for O<ncM, ves, .

We also assume that we have an iterative linear system solving process 1P which uses this

preconditioning operator. We now wish to use IP to calculate approximations to the

solution of énx = F , assuming we have been given the right hand side F , an initial

guess ¥ fo: } and a tolerance Bn >0 . We will assume that there is an a = an(Bn)

a

so that if n is the an-th iterate of the process 1P, then

(a )

(5.7) 1P 2 te-x ™l < 8 1B 2 txex -

Finally, we will make an assumption about the total number of iterations needed to achieve

certain tolerances. If Bn = ¢ ti/z for 1 <n <N, where ¢ > 0 , then we will require
N
1 3 i A
that N 2 o < C for large N <M ; that is, we only need finitely many iterations per
n=1
. time step, on the average, to achieve these tolerances.

With the process IP at hand, we now formally state a variant of the algorithm stated

in (3.8). First of all, given a v(x), we choose a U_ € S, that is close to v and given

0
a set {Bn ):=1 of positive tolerances, we define UMl in temms of {(U’}}__, © < n <M1,

h

in the following way. We use enough iterations of the process IP (which uses the precondi-

tioning operator pQ) to generate an approximation Un+1 to the (true) solution Gn+1 of

the following system:

~ -n+l ~

(5.8) Qr41Y = puey
where the error made is to be less than the tolerance Bn+1' in the sense of (5.7). We use

n i

]
5- =
i, Zaa W jzo Yn+1.J'U
for certain coefficients {Yn+1 j};-o , as an initial guess. (We will fix values for these
. =

coefficients later when it will be clearer what they need to be. Of course, letting

zn*l(u) =u" isa possibility and in general, we will never use more than the past few

values.)
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If we redefine Hn = Un-wn for n > 0 , we note that we have the following important

identity, an analogue of (4.1):

5100 g ™M ap E" s e ooe E" 4 @"phe"
< n+l p n+1 e ||
(Qn+x-Qn0l)E T (Qn+lw il )
+ Qn‘l(un*l-ﬁ"*l) ! 0 <n < M-l

We now analyze the error made by this kind of approximation algorithm. We will begin

by studying a result that is easy to obtain but is not the best possible for our situation.

\Y

We will briefly assume that we solve (5.8) to an error of Sn =k for 1 <n v=-1

<

(if v > 2) and to an error of Sn =k for v n < M. We note that these latter toler-

ances imply that for our types of processes I, we must do on the order of log (M) =
log(t/k) iterations per time step in general. One might expect these tolerances to lead
to good error estimates (if we use the appropriate initial guesses) and we will show th-t
they indeed lead to good estimates. However we will later show that we can get the same
type of estimates for a modified algorithm that only requires finitely many iterations
per time step, on the average.

We will assume that v(x) is sufficiently smooth and compatible for this discussion.

In particular, this implies that we can take U0

01 02

to be an approximation generated by P

to either or (recall that these were defined in Proposition (4.6)) with an

initial guess of zero and an error tolerance of 80 = n' g (However, recall (4.15).)

Our algorithm is of course not well defined and in fact will not obtain the accuracy
claimed unless we make some special choices for the starting guesses required by the process
IP. To be able to do this for the various schemes, we introduce some specific examples of

the operators discussed in (5.9) as follows:

(0) 1) , n
= < = U ) ¢ <

Zn’l(U) 0 for O <n <M, Zn+1(U) U for 0 <hn <N,
(2) n  n-=1
zn+l(U) = 20 -U for 1 <n<M,
2wy « w-30" 4 0™ ? for 2<mem,

n+l -

- -3 -
24 () = a® - ™ 4 ™ - " for 3 <n <M,
n+l -
285 ) = su™ - 1007 4 2002 - 50" 4 ™Y for 4 <nem .
=30=




L SR

%
§ We can now state this not quite best possible algorithm in its entirety:
Algorithm (1): Use T with the preconditioning operator pQ to
: . 0 ‘ (479 § 0,2 ; Sy
(1) generate an approximation U to either V or V using zero as an initial
) . p
guess and a tolerance b= % ne
: ; n+l S L (1) n
(2) generate an approximation U to the (true) solution of (5.8) using EN (V) = v
as an initial guess and a tolerance 6n+1 = k" in the range 1 < n+l < v-1 ;
. - n+l ) - (v)
(3) generate an approximation U to the (true) solution of (5.8) using zn‘l(v) as
an initial guess and a tolerance 5n‘1 = k , in the range v <ntl <M
Again we note that since we are using a tolerance of ﬁn+l =k for v <ntl <M, we need %
3
| on the order of log(M) = log(i/k) iterations per time step, in general.
l i
| We use the techniques of Section IV to study this process via Equation (5.10). ¢
| 3
| We first observe the following: i
!
| P +1 -n+ + 2 + 2 +1 -n+l g
i (5.11) i(QnH(un o T CIIQV LinPol/2 (u™ g™y
— 2
|
|
| ~ j1/-- ,n+1 1/2 (x)
; b C“g B n*l"Qn+1 (l))"
1/2 n+1 1/- (1)
< GR. .1 3
< Cbn+1lQ g (t))l
1/. n*l (1) 1
E + 3
IIQ!“l (w))") i
n+l
1/2 + 2
(5.12) e el limit v e | ot ey
n+l - o Bl
j=n=-i+l
4 _ where i=1 or v depending on n . If we have Condition Bh and a suitable v(x), then E
n+l_ (x) n+l_ (1) nel_ (U ;
9413 < C - :
{5.13) “Qn¢1(w (W))" < Cliw (w)n € kHLn§1(w (w))N !
: : : {
<ckl( sup WP+ sup lll.h(s)w(")(s\ﬂ) :
LTS O<s< §
| 0—F’—tml \—ﬁ—yn+1 4
== SIS .
A e 1 §
<Ck “\"2(i41) ¢
where again i=1 or | depending on n i
i
4 i
: i
] !
1 i




Thus, we can show the following:

M

Theorem (5.3): If we generate a sequence of approximations ({l .
———— it n=(

u

where v ¢ H (b = max(2(v+l) ,2(r+l))) is sufficiently smooth and compatible and we

assume Condition B, , then for N > 0 , we have that

h
(5.14) (N St TR NN S VT
Proof : Let n > 0 . We have via (5.10) and our estimates that
) 1 Al
(5.15) to . E ™ o nse k)@ B RN & e xiivi® (e 2
n+l - n M
n-1 ,
+ Ck ) (0.e7 %) .

j=max (n=v+1,0) )

Also if 0 < n < v=1 then Hoi/:EnN < c(x"+n%). These inequalities and (5.15) give our
result.

Thus we have optimal order errors for Algorithm (1).

As a preliminary to analyzing an algori*hm that requires only finitely many itera-

tions per time step on the average, we prove some results for the following situation.

n 5 j.n
} to the functions (W'} : are
j=n-i+l

Suppose that a set of approximations (vl jun=itl

given, where 1 < i < v+l and n > i-1l. Use the process T (with the preconditioning

‘n¢1 =n+l "

operator )Q) to generate an approximation U to the (true) solution U of (5.8)

i (i) i
using 2 () as an initial guess and a tolerance g >0 «
n+l n+l

By the analysis done so far, we already know the following.

Proposition (5.4): Suppose we have Condition Bh and v(x) is sufficiently smooth and

compatible. Then for any ¢ > 0 , we have that

\)
(5.16) (lea"”,s"”s < mcm(gnn",a") i L:((Qn-pnn:“,r

n

)

y 2 2 e L) S
+eRLB R eR X it
n+l u

s i (O, S o I
re — g’ (e’-¢’ it et
J=n=i+d

The above result motivates the investigation of the equation stated in the following

result.

using Algorithm (1),

:




Proposition (5.5): Let QW = PV+F where Q and P are selfadjoint operators on S

Then we have that
(5.17) ((Q+P) (W~-V) ,W-V) + ((Q~P)W,W) = ((Q-P)V,V) + 2(F,W~V)
Suppose further that Q@ and P satisfy (4.2) (iii). Then
§(Q(W-v) ,Ww=V) + ((Q-P)W,W) < ((Q-P)V,V) + 2(F,W-V).
We now apply Proposition (5.5) to (5.10). If we can enforce a certain important
condition, namely that ¢ > 0 for our polynomials P(x) and Q(x) (recall (3.1)), we

can obtain an estimate that will allow us to analyze the last term in (5.16).

Proposition (5.6) : Suppose we have Condition Bh > Vie HY (4 = max(2r+2,2v+2)) is
sufficiently smooth and compatible and &§ > 0 . Then there are constants Rg* > 0 and
i *
CG > 0 so that if 8n+1 < B* , we have that
TA2V AN PR D n+l _n+l
Q - =
(5.18) C&"Qn+l(E EET + ((Qn+1 Pn+1)E «E )
n _n 2 N+l _n+l AR n .n
< (+ck)((Q -PIELE) + Ck™(Q ET,E ) 4+ CkT(QEL,E)
n
2 ) 2 2i-2 2 2 1LPA ARG R e
) [¢ =
+ Ck°{(h" +k + 8k Hvll = + c8 ) Z. ozt @&l "
J=n-i+2
Proof : Our usual techniques, with different uses of the arithmetic-geometric mean in-

equality, yield (5.18) with (1+Ck) replaced by 1 and with the following extra term on
the right hand side:
(5.19) {(((le—pnﬂ) - (Qn-pn))sn,sn)!.
Note that Q(x)-P(x) = x + O(xz) by the accuracy condition (3.1) (iii) and
Q(x)-pP(x) >0 for x >0 . If we redefine RI(x) = x + |q2-p2[x2 then ClR(x) <
Q(x)-P(x) < CZR(x) for 0 < x < » , Thus, under Condition Bh , the techniques of Section

IV show that

(5.20) Lot P yy) = @ e NENEM | < ok’ @ "™ + ok’ la,-p, |1t M
< ck (rR(kIE",E™ < ck ((@ -p )E",EM)
- n S n n

We could now combine (5.16) and (5.18) with suitable choices for the parameter i .
;/2ENH is bounded by terms that are O(hr+kv),
terms that measure the initial error in the Q;/z-norm and terms that measure the initial

k-l/z(QO‘Po)l/z-norm. The projection we have chosen for the initial data

We would then essentially find that |IQ

error in the




(as given in Proposition (4.6)) is defined so that it is computable by the 1P process

and so it leads to an initial error that is good in the Qé/z—norm. Unfortunately it
. : 5 -1/2 1/2
does not necessarily lead to one that is good in the k (QO-PO) -norm. We could

g 0
now proceed in two ways. One approach is to let U be PIV or look for another special

approximation which is good in all the required norms. But since the process P would
probably not be useful in generating such an approximation (the spectrum of pQ does not
bear the correct relationship to the spectrum of Lh(O)), a special process would be needed
to generate only Uo. Since we would prefer to avoid this situation, we are led to using
(5.18) in some other way. After all, it was only the direct use of (5.18) that gave this
apparent problem.

We have the following result which combines (5.16) and a variant of (5.18); the latter
uses multiplication by the time variable to avoid potential problems at time zero.

Proposition (5.7): Suppose that Condition Bh holds, v ¢ HE (p=max (2r+2,2v+2)) 1is suf-

ficiently smooth and compatible and & > 0 . Then for each ¢ > 0 there is a B¥* >0 SO
s : 1/2 : A
that if Bn+1 = m1n(6**,tn+l), we have the following where C is independent of ¢
t
n+l _n+l A~ n+l T2 st a2
(leE £ )+ e o lIQn+l(E -EN)I
(5.21)
tn+1 n+l _n+l =
i o San - n _n
€ X ((Qn+1 Pn+1)E «E ) X ((Qn Pn)E +E )]
nn _n
< (k) ™ EM - (8/3) (g -p )E",EY
2r 2V 2 2i-2 2
+ Ck(h 4k +
( en+lk )llvllu
t n
+1 i _j-
+e "k ) oY 2 ®I_gd=1yy2 |
j=n-i+2
Proof : It is a rather straightforward computation using (5.16) and (5.18) to obtain (5.21)

with §/3 replaced by §/2 and a term

N i N en
Cnl ((Qn Pn)E /E7)

on the right hand side where € 0 1is arbitrary. This gives the result.

We can now define and state results for our final algorithm:

Algorithm (2): Use T with the preconditioning operator pQ to

: y 0
(1) generate an approximation U  to either VO'1 or VO'2 using zero as an initial

guess and a tolerance BO = %h

)

s

-

P

o ra— —

|
§




(2)  generate an approximation l"“l to the (true) solution of (5.8) using .'l(‘"‘;“ 1)
as an initial guess and a tolerance lim‘ < min(k ",;‘\ in the range 1 nel 3
where R 0 is small.

(3)  generate an approximation l'ml to the (true) solution of (5.8) using ‘.',‘:\.;“u'\
as an initial guess and a tolerance (im‘ min(v,t:ﬂl';) in the range v+l n+l M,

where £ > 0 is small.

We note that the important difference between this algorithm and Algorithm (1) is
that by our assumptions on the process P, we only have to iterate a fixed number of
times at each time step, on the average. Thus we are demanding fewer iterations, but as

we will soon see, we get the same convergence rates.

: I p :
Theorem (5. 8): Suppose that Condition “l holds, v « Il‘ (u=max (r+2,2v+¢2)) is suf-
R ey \

ficiently smooth and compatible and & > 0 . Then there is a (computable) £ >~ 0 so that

n WM

the approximations {1
n=0

generatea o Algorithm (2) satisfy

1/2, W N WAl
N " “(w =ull <« ck“en vl , N >0,
N _ it S
N N “1/2, .V, . ¢
Iw =0l < ¢t Vv B S
W | v € (kK +h Yl o N (
N ) 5
flu(t Y-t - \‘(k\H\'HIvII o
N - 1"

NN 4 X
Note that we get a superconvergence result for W =U in the II-Ill-nnm\ for times

bounded away from zero.

Proof : The proof is aluost immediate from (5.21). We first see that
nel nel ) 0 S U0 R S ntl  nel
) 3 o ) ) 5 S O B | B ol O (6] -p B B )
(‘"ml llg“”(! B 3 ((\ml lml) .
(5.22)

ek el !
i

for 1 < n#l < v, where we note the important role of the t variable in the case n=0.
€1 %l
! " : y Vv
If N > wl, we set i vl in (5.21), multiply the inequality by e i for a
suitable (‘l and sum over the range v < n « N=l. Then by choosing ¢ Y0 sufficiently
small and using (5.22) for 0 n < v, we obtain the first result. The third result now

casily follows.

The remaining resuilt is obtained by noting that if ¢ 8.+ 0 n M and
0
R(X) = x + |q,-p,|x° then
¢ ¢
Rell . € €L @) R y Yoy A N B YR
ity “'c\ k( (kl“s,~) k((\l\ ‘"\,\ .




Thus Algorithm (2) generates accurate approximations to the solution

if the polynomial pair is such that § » 0 , implying that dissipation effects are present.

As was notcd before, similar results can be proven for stable polynomial pairs (for which

2
§ = 0) if dissipation is introduced by requiring that k < G

=26~

A AN

u(t) of (1.1)
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Vi Computational Considerations

We conclude this paper with a few remarks concerning the computational aspects of

. L 2 3
Algorithm (2) for quadratic P(x) and Q(x). Suppose that the functions i»“ )x \ f orm

a basis for § Moreover, suppose that these functions have been chosen so that lincar

h'
J ¢ : 2
systems on IR involving the matrices

J (1) LR J

i, d=1 .’\m - l(l;m si,»i)]i'izl ¢« 0<m M,
J

i,3=1

Am - [(Lm»inb i)]
G = [(v,,0)]
> e
have acceptable computational properties. We now wish to examine Algorithm (2) in this
context.
We begin this discussion by making some definitions and identifications. lLet

0<m <M If »"Y.‘,s?ts then
Y e i b © h

J ¢ 1
6.1 g = p s L P = 3 A E) e
(6.1) G = Lew Iy, I ¢ 2 (67 A8

Thus if U = )j"'jv)' satisfies le-' = ¢ then

(6.2) (T + qk6 A+ q.x°t6" A A - "My,
1 m 2 m m m +
or, equivalently,
(6.3) B (G + q. kA + q k21\ G-IA - q kzi\“))'
m 17 m 2" 'm m 2" m =

J
i=l

= Gf = [(»’yv'j”
We note that (6.3) involves a symmetric, positive definite matrix B . We now lot

Fo he one of the polynomials in k"u discussed in Section v. lLet l‘\‘(x\ = 1 & Q¥
~ 2 2
+ q,x  define its coefficients and let
p . v KA k-‘ ,"l
B = G ¢ ql 0 + q;’ A\\h AO '

which is also a symmetric, positive definite matrix on ™ . Finally, rewriting (5.0)

gives us the following:

: \ ) J
(6.4) \‘l (lHll'_'!) < (Bmu,u) k t'.‘ (‘“!l"l i ne M

i 5 J
where (+,+) is the usual inner product on IR

2 : J .
Thus we see that Sh with the L7 (2)-inner product and 1K with the (G, innex

product are unitarily equivalent under the identification of ¢ with the i-th canonical

) ’ . J gt o A
basis function in IR . This implies that any process W on 8§ that solves systems
1




involving using ]'\‘ as a preconditioner is formally equivalent to a proce I
m
J 1 - P
on IR that solves systems involving ¢ B using G B as a preconditioner. LN
m
JJ .
a process will usually be given on IR in practice, this identification defines tiu
corresponding process W on S
1
n,
How do we compute the coetficients | } for the basis expansion of the
1 1<34J,0<n<M
- n, B . %
functions (U} 1 <M 2L, ¢ defined by Algorithm (2)?2 The linear system used to m
0'n i
Q . a v.
pute U has ¢ Pt a right hand side where f BAGY: 3XT 9 E AR then
i
1 Jg J
(6.5) Gf [(PE.¢.)) [(F,e.))
- } =1 ) " =1
f f
Thus Gf can be calculated by taking inner products with f  and can be found by
n+l
solving a system involving G . The linear system used to compute U for some n
n \'_Il & n n
has P U { ,‘l as a right hand side. If we know (the coefficient tor ) t he
n i
% P | 1 (1) n
(6.0) G (C+ P kA + PR (ARG A=A V)¢ "
. | < n -
e A n
s0 that GO can be calculated by solving one system involving G and can be caleun
lated by solving two. Thus we can compute the right hand sides of the various systems.
I n e
1f we Kknow { " y the initial guess for the iteration procedure 15 easy to calculate
- \
. ntl . \J -1 1}
“hen to find o via the process P , we may have to evaluate G bt and B,
n+
i -1 p ;
solve systems involving G 8 and do various Hilbert space operations in U with
. y i ¢ ~1 »L § .
the (Ge, - inner product., Bvaluating G B Wi oY : B is strajghtforward, {How
n
ever, note that calculating
(Gt In ) ) (B iy n"
GG ' v «1 " n N
;s nel’ 2t nelty ; h D
1
only means solving one system involving ). If we have to solve the system i
" J ; s P
in IR, we observe that this is squivalent to solving ‘'R { - (Thi b M
venient in many situations as GI may be ecasier to obtain than s+  This was the (B
in (6.5) and (6.6).) We must now solve systems that involve ‘R, If  Q(x) (1+x)°
for same \ » 0 for instance, then
P : =L, .
" (l.o\k,\‘\\‘ (Graka )
{ (
Thus solving ‘N'} Gf in this case means solving two systems that involve the e maty
(Ge \kl\‘) and evaluating G once. If 'Q(x) is not a perfect square, other technioque
!
-5 P
could be used to efficiently solve systems involving i
! W the abowve

The particular choice of the iterative process will determine whic

considerations is relevant in the implementation of Alaorithm ().

1

R

——

e bl o e o




e

-,

(1]

(3]

(41

(5]

(el

(7

(8]

References
Axelsson, 0., On preconditioning and convergence acceleration in sparse matrix
problems, CERN European Organization for Nuclear Research, Geneva, 1974.
Baker, G. A., Bramble, J. H. and Thomée, V., Single step Galerkin approximations
for parabolic problems, Math. Comp. 31, (1977), pp. 818-847.
Douglas, J., Jr. and Dupont, T., Alternating direction methods on rectangles,

Numerical Solution of Partial Differential Equations - II, (B. Hubbard, ed.),

Academic Press, New York, 1971.
bouglas, J., Jr., Dupont, T. and Ewing, R., Incomplete iteration for time-stepping
a Galerkin method for a quasilinear parabolic problem, SIAM J. Num. Anal., (to appear).

Friedman, A., Partial Differential Equations, Robert E. Krieger Publishing Company,

Huntington, New York, 1976.

Lions, J. L. and Magenes, E., Nonhomogeneous Boundary Value Problems and Applications,

II, Springer-Verlag, New York, 1973.
Nassif, N. and Descloux, J., Stability study for time-~dependent linear parabolic

equations and its application to Hermitian methods, Topics in Numerical Analysis III,

(J. Miller, Ed.), Academic Press, New York, 1977.
Sammon, P., Approximations for parabolic equations with time dependent coefficients,

Ph.D. Thesis, Cornell University, 1978,

sttt e

~ e~




SEC \)m‘rv LL A\SIFN ATION OF THIS PAGE (When Data Fntered)

READ INSTRUCTION:®

[ l'D James H /M\m le Gma Peter H.[ Sammon ,/ P VAR

REPORT DOCUMENTATION PAGE BEFORE COMBLETNG FORM
T RLPORT NUMBER & LN T2 GOVT ACCESSION NOJ 3 RECIPIENT'S CATALOG NUMBE R —T
1958 [
|
Bt — i it SIS e it et O i e i r=iy ;
[ TLE o Subiiilel S g Y\l'o QF REPORT & PERIOD COVERED
é 'FICIENT HIGHER QRDER GINGLE STEP METHODS FOR Summary Report - no speciiic
A -
t\hmml IC PROBLE Mi 9‘, PART I , = : ropoxtn q pvnm.
' = - o 6 PERFORMING ORG. REPORT NUMEE R
(2. AU T N W e T T8 CONTRACT OR GRANT NUMBER(s 4

DANG29-T5-C 00._3;
F —ic ST0-7230 Sep-

AREA & WORK UNIT NUMBE RS

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Mathematics Research Center, Universily of
610 Walnut Street Wisconsin |7 - numerical Analysic
Madison, Wisconsin 53706

S — — TS P ——

11, CONTROLLING OFFICE NAME AND Al‘lan S5

l \ May GR79

See Item 18 below vV
29
Ta. MONITQRING \l-EN( Y NAME & AODRESS(H dif{erent {r\vm \dnfn)l“v\ﬁ Olh\«\ 1S, SECURITY CLASS. (of thia report) B
3 4 P UNCLASSIFIED
[ 1Sa. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTK BUTION STAYEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered mmw T e el e e S ]

@Tﬁb}\» ni ool Svmn Ry Pa/ﬂ'

bnw .

18. SUPPLEMENTARY NOTES e L )
U.S. Armmy Research Office National Science Foundation
P.O. Box 12211 wWashington, D. C. 20550
Research Triangle Park
North Carolina 27709
o e e B e S

19. KEY WORDS (Continue on reverse side if necessary and Identify by block number)

Parabolic Equations
Galerkin Methods
Higher Order Methods

20 TRACT (Continue on reverse aide I necessary and identitv by dlock number)
Some efficient, high order methods are discussed for approximating the solud
tion of an initial boundary value problem for a homogeneous parabolic ecquation
with time dependent coefficients. The methods are based on GalerKkin-type appro \\w
mations in the spacial variables and single step methods in the time variable.
The equations defining the time steppina procedure are solved only approximately
however. A preconditioned iterative technique is used for this purpose. The
resulting algorithm is shown to produce optimal order approximations using only
the order of work required Ly the single step method appliel to the parabolic ~

¥

\\

P—

FORM S
1 AN 73 V4T3 EDITION OF 1 NOV 65 15 0OBSOLETE . " —————

UNCLASSIFIED

SEC URIT\' kLASSlFlC AYlON OF YN S PAGE “hpn Dats mer'

problem with time independent coefficient: Qi \] z OO




b b e




